Photon Rectify: Undistort any footage on the timeline

Jannik Boll Nielsen
Technical University of Denmark

Rasmus Ramsbøl Jensen
Technical University of Denmark

(a) Original (b) Rectified w. overlay (c) Rectified w. autoscale & overlay (d) Rectified w. autoscale

Figure 1: Rectification of GoPro content from "4:3 wide"-mode. 1a: Original output of GoPro camera, suffering from a large amount of barrel distortion. 1b: Rectified footage using Photon Rectify. Green and red lines outline the deformation field. Notice that a lot of the image is cropped away. 1c: automatic scaling of the content is enabled and a considerable amount of pixels is regained. 1d: Result without overlay.

CCS CONCEPTS
-Computing methodologies — Image processing; Video summarization;

KEYWORDS
lens distortion, rectification, scaling, real-time, video-processing

ACM Reference format:

INTRODUCTION
Action cameras have allowed footage from previously unseen points of view, drones allow for innovative aerial shots, which a few years ago, were either impossible or required a helicopter, and finally DSLR video and lens adaptors have made any lens available for video production. These advances provide especially low-budget movie productions with completely new flexibility and potential.

Due to multiple factors such as: size-limitations, cost, and the desire for a wide field of view, footage might suffer from noticeable lens distortions (fig. 1a). To mitigate distortion, and to mimic, and possibly blend, with the output of way more expensive high-end optics, proper lens correction must be carried out. Photon Rectify aids movie productions in doing so by enabling fast and accurate lens-correction right on the timeline in the industry standard video editing tools, Adobe After Effects and Adobe Premiere.

Although accurate and reliable camera calibration is a fairly solved problem in academia [Zhang 1999], with tools readily available to researchers through e.g. the OpenCV library [Bradski and Kaehler 2008], the technology has been poorly transferred to the industry and in particular video production. While Adobe Photoshop provides tools and presets for rectification of photos acquired through some cameras and lenses, only primitive deformation tools are available for timeline video editing. Photon Rectify brings accurate camera calibration and such rectification to video editing following the computer vision de facto standard [Bradski and Kaehler 2008; Zhang 1999]. Correction is done either using predefined parameters (fig. 1b) or through custom calibrations. Any combination of camera and lens can easily be calibrated using Photon Rectify’s build-in calibration tool. The tool makes it easy to create sharable presets for an endless amount of sensor/lens combinations. Moving beyond standard image calibration, Photon Rectify also allows for automatic scaling of content (fig. 1c & 1d). This ensuring that there are no missing pixels in the output, while maximizing the valid coverage of the sensor. The scaling is built directly into the resampling pipeline and manually controllable, which avoids double interpolation as a result of later scaling. Finally, to accommodate artistic needs, the plugin provides a linear blending control that allows smooth transitions between distorted and undistorted footage.

METHOD

Rectification and calibration. Given an image center, \((c_x, c_y)\), and a camera focal length, \(f\), in pixels units, a pixel coordinate \((x, y)\) may be represented in normalized, centered coordinates and have a (squared) radial distance by:

\[
\hat{x} = \frac{x - c_x}{f}, \quad \hat{y} = \frac{y - c_y}{f}, \quad r^2 = \hat{x}^2 + \hat{y}^2 \quad (1)
\]

Iterating over the output image, \((\hat{x}_{\text{out}}, \hat{y}_{\text{out}})\), undistortion can be achieved by sampling in the input image \((x_{\text{sample}}, y_{\text{sample}})\) according to the lens distortion as shown in fig. 2. We only correct for...
radial distortion as follows:

\[
\begin{align*}
\hat{x}_{\text{sample}} &= x_{\text{out}} \cdot \text{dist}_{\text{radial}} \\
\hat{y}_{\text{sample}} &= y_{\text{out}} \cdot \text{dist}_{\text{radial}}
\end{align*}
\]

Where \(\text{dist}_{\text{radial}} \) is a 6th order polynomial, which describes the radial distortion:

\[
\text{dist}_{\text{radial}} = 1 + K_1 r^2 + K_2 r^4 + K_3 r^6
\]

Determining the calibration parameters, \((f, K_1, K_2, K_3) \), can easily be done using checkerboard-based calibration [Bradski and Kaehler 2008; Zhang 1999]. Photon Rectify includes a simple tool for custom calibration of any camera. Not only does it allow for rectification in post production, it also allows for camera calibration in the post production, which is handy, when your production footage turns out to have undesirable distortion. As many video cameras have a wide variety of output resolutions and crops, we use the sensor normalized focal length: \(f_{\text{normalized}} = f_{\text{pixel}} / w_{\text{pixel}} \), where \(w_{\text{pixel}} \) is the width of the sensor in pixels. This allows the same calibration to be used for footage with identical sensor coverage at different resolutions; such as 1080p and 4k which is a common option. Many sensors also have different crops for different modes such as: Photo 4:3, Video 16:9, Cinematic 21:9, as well as sensor crop zoom. As a consequence, the footage is not applied. In fig. 2 we highlight three key points, pixels may be lost or empty regions may occur, if proper scaling of the footage is not applied. In fig. 2 we highlight three key points, and the smallest scaling is chosen (smaller \(s \) equals more zoom). While autoscaling keeps the most valid pixels, the plugin also allows for disabling or manually setting the scaling. The latter is important, when scaling is needed, as it avoids interpolating twice in first undistorting and then scaling.

Correction blending. As a final feature Photon Rectify allows users to smoothly turn the correction on or off. Note that the radial distortion polynomial in eq. 5 can easily be modified with a blending coefficient, \(\alpha \in [0, 1] \):

\[
\text{dist}_{\text{radial, scaled}} = 1 + \alpha (K_1 r^2 s^2 + K_2 r^4 s^4 + K_3 r^6 s^6)
\]

Footage taken with a very wide angle might appear a bit sharp, when totally rectified, while leaving some distortion might soften it a bit. It also accommodates artistic needs.

CONCLUSION

To summarize, we here present a plugin that provides accessible image rectification of any video content. With this, artists can now choose to apply rectification directly on the post production timeline, adding new flexibility. Photon Rectify bridges another gap between computer vision and video production.

REFERENCES
